
MISOSYS Disassembler - Disk version III

DSMBLR - 1

 DDDDD SSSSS MM MM BBBBB LL RRRRR
 DD DD SS SS MMM MMM BB BB LL RR RR
 DD DD SS MMMMMMM BB BB LL RR RR
 DD DD SSSSS MM M MM BBBBBB LL RRRRR
 DD DD SS MM MM BB BB LL RR RR
 DD DD SS SS MM MM BB BB LLLLLLL RR RR
 DDDDD SSSSS MM MM BBBBB LLLLLLL RR RR

Copyright (c) 1983 by Roy Soltoff

 Programmers have probably been disassembling machine code programs since
the time programs were being "hand" assembled. What is a disassembly? Simply
the reverse process of assembly - taking a program or a piece of a program
and translating it back to an assembly language state. This disassembler is
a tool for helping you with the process. DSMBLR III is a third generation
product. This tool provides extensive capabilities such as direct
disassembly from CMD disk files, automatic partitioning of output disk files,
data screening for non-code regions, and full label generation. DSMBLR III
even generates the ORGs and END statement - the complete ball of wax.

 Surely a tool of this capability should be difficult to use. Not so! You
will find that the use of this disassembler - even by a beginning assembly
language programmer - will be paying handsome rewards with the ease of its
use and clarity of these instructions. DSMBLR III is a professional tool for
your use.

TABLE OF CONTENTS

GENERAL . 2

DISTRIBUTION DISKETTE 2

EXECUTION INSTRUCTIONS 3

CONTROL FUNCTION OPTIONS 4

INPUT MODE SPECIFICATIONS 6

DISASSEMBLY ADDRESS PROMPTS 7

SCREENING DATA ENTRY 8

OUTPUT COMMAND OPTIONS 11

DEVELOPING A SOURCE PROGRAM 15

DEVELOPING SCREENING DATA 16

APPENDIX 19

MISOSYS Disassembler - Disk version III

DSMBLR - 2

GENERAL
=======

 The MISOSYS disassembler is a machine language labeling disassembler
that supports direct disassembly from "CMD" files. The generated output can
be directed to a line printer, the video screen, or automatically partitioned
into multiple disk files. DSMBLR-III functions with the Radio Shack TRS-80
Model I or Model III microcomputers. PRO-DUCE functions under LDOS 6.x.x.
This disassembler operates in two passes in order to incorporate symbolic
labels in the source output. The symbolic labels are generated for address
and 16-bit numeric references with the start-to-end user disassembly request
or the scope of the CMD file. All address references not coincident with the
start of an instruction's address within the range of the disassembly are
output as equates (EQU) which can be optionally suppressed.

 You are assumed to be familiar with Z-80 assembler mnemonics as
specified in the ZILOG, "Z-80 ASSEMBLY LANGUAGE PROGRAM MANUAL", 3.0 D.S.,
REL 2.1, FEB 1977. Many texts can be located which provide various insights
into Z-80 assembly language programming. Do not overlook articles on
assembler routines appearing in the magazine and journal media.

 This version provides a disk file output in standard un-numbered ASCII
format compatible with the MISOSYS editor/assembler EDAS. Options are
provided to add a file "header", line numbers, or a colon (:) after labels
except those defined with EQU. These options permit the output file to be
altered to suit other assemblers.

DISTRIBUTION DISKETTE
=====================

 The Disassembler Version III is a machine language program supplied on a
data disk. For Model I/III users, DSMBLR-III is supplied on a 35-track
single-density LDOS data diskette [Model III TRSDOS users must use the TRSDOS
"CONVERT" utility to transfer files from the distribution diskette to their
SYSTEM diskette. Model 1 TRSDOS 2.3 users MUST READ THE APPENDIX]. The LDOS
6.x.x compatible PRO-DUCE is distributed on a 40-track single density
diskette. Each distribution diskette contains two copies of the disassembler.
One is named "DSMBLR/CMD" with the other is "DSMBLER/BKU" and is a backup
copy of the former. Three other files are included. "SCRIPSIT/TXT" is a text
file containing screening data for the Radio Shack Model I version of
SCRIPSIT/LC. By disassembling a copy of SCRIPSIT/LC using this text file for
screening data, a good set of source files are output.

 Two other files are "BINHEX/CMD" and "BINHEX/TXT". These files are
supplied to serve as an example of program disassembly. The section on
"Screening Data Entry" explains the use of these files.

LDOS is a trademark of Logical Systems, Inc.

TRSDOS is a trademark of Tandy Corp.

MISOSYS Disassembler - Disk version III

DSMBLR - 3

EXECUTION INSTRUCTIONS
======================

 The disassembler is executed by issuing the command:

===
| |
| DSMBLR [filespec] [(colon,header,lines=xx,number,size=yy)] |
| |
| where: |
| |
| filespec - Is the filespec of the disk file you want to |
| disassemble. If you omit the file extension, |
| "/CMD" will be assumed. The filespec is |
| optional. Program prompts will query you as |
| to the input mode if the filespec is omitted. |
| |
| colon - Specifies that you want the disassembler to |
| append a colon (:) to symbols in the label |
| column that are not defining EQUates. |
| |
| header - Is a parameter to force any output file |
| to generate a header string prior to the |
| first source line. The header will consist |
| of X'D3' followed by the first six characters |
| of the output filespec. |
| |
| lines=xx - Specifies that you want the line printer |
| output to issue a form feed (X'0C') after |
| "xx" number of lines have been printed. The |
| disassembler maintains an internal line |
| counter that increments on each carriage |
| return. The default setting of "lines" is 56. |
| Thus, if you set your form paper to start |
| printing on the fifth line from the top of |
| the form, the disassembler will maintain a |
| five-line margin top and bottom on 11" paper. |
| |
| number - Specifies that you want the output disk file |
| to add line numbers on each line. The line |
| numbering starts with 00001 and increments |
| by 00001 for each line. The format used is a |
| 5-character ASCII number with the high-order |
| bit set. The number is immediately followed |
| with a space. Note: video and printer output |
| is always numbered. |
| |
| size - Specifies the maximum size of the output disk |
| file before partitioning. Size will default |
| to 12K. See the text on output file |
| partitioning. |
| |
| Parameters may be abbreviated to their first letter. |
| Command line entries in square brackets "[]" are optional. |
| |
===

MISOSYS Disassembler - Disk version III

DSMBLR - 4

CONTROL FUNCTION OPTIONS
========================

 The disassembler supports options to control the disassembly. These
options are entered in response to the following message:

 Control function: <D>OS exit, <C>lear table, toggle <E>quates
 <S>ystem tape, <T>est tape (D,C,E,S,T)? >

The <S> and <T> options are only available on the Model I and III computers.
Each time you enter an option, the prompting message will re-appear (unless
you have selected <D> - exit to DOS). When you have completed your option
specification, depress <ENTER> and the disassembler will proceed to the next
prompt. A discussion of the purpose of each option follows.

 Each time you complete a disassembly, the disassembler will return to
the control function prompt. The <D> option is used to return control to the
DOS command interpreter. This is the way in which you exit the disassembler.
The "DOS READY" message will be displayed.

 DSMBLR is a two-pass disassembler. The first pass disassembles the
target program and builds a table used for the generation of symbolic labels.
Output is not generated during this pass. After the first pass completes, the
symbol table is not reset until cleared. Subsequent disassemblies proceed
immediately with pass two - the pass which produces output. The first pass is
performed only when the symbol table buffer region is "cleared". By issuing
the <C> option the buffer is cleared and the following message is displayed:

 Symbol table cleared

 When the disassembler first executes, it is placed in a mode that
simulates an un-cleared symbol table. The SYMBOL table is regenerated only
when the table is cleared using the control function <C>. This is done to
enable you to quickly scan a memory region without having to wait for the
first pass to complete. If you choose to disassemble directly from disk, you
do not need to specify the <C> option as it is automatically performed.

 It is common practice to define program constants and address references
to other programs at the front end of a source program by means of equate
statements (with the assembler pseudo-op, EQU). When the target program
contains address references that precede the start-of-disassembly, these
references will be output as EQU statements. Equates are also generated for
each symbolic label found in the symbol table that does not correspond to the
start of an instruction. These labels are output in the form:

 LABEL EQU $-n

where "n" is the offset to the label address from the current program
counter. Equates are also generated for all address references that extend
beyond the end of the target program.

 You may chose to suppress the generation of equates in the disassem-
bler's output by using this option. Equate generation will be either on or
off. A flag control is used to indicate the ON or OFF mode. You reverse the
flag's status every time you enter the <E> option. As is the case with the
<C> option, a disassembly directly from disk will force the flag to be ON.

MISOSYS Disassembler - Disk version III

DSMBLR - 5

The status of equate generation is shown each time the Control Function
prompt is issued.

 The <S> option is available only on the Model I or Model III computer.
It will load a SYSTEM program into memory. It is strongly suggested that you
transfer a SYSTEM tape program to a CMD disk file and directly disassemble
the disk file. The <S> option will identify the program's FILENAME, its
STARTing address, its ENDing address and it's TRANSFER address (the location
that control will be transferred to after loading a SYSTEM program via the
SYSTEM command and issuing the "/" <ENTER>). The program's FILENAME and
address information will be displayed in the message:

 FILNAM: START=xxxx, END=yyyy, TRANSFER=zzzz

where xxxx, yyyy and zzzz are displayed in hexadecimal. Also, if the program
loads without a checksum error, the START and END variables will be retained
for automatic use in the disassembly. Caution should be observed if you
suspect that the program may overlay the operating system. If the program
loads below 5200H, your system will probably crash. You will be informed if
the program will overlay the disassembler. It is suggested that when in
doubt, use the <T> option first.

 The <T>est option operates just like the <S> control function. However,
since you may want to discover the address load information without
physically loading the program, this command will do just that. The
information is identified, but the program is not loaded into memory. The
START and END variables are updated. Remember, it is best to transfer a tape
program to disk and use disassembly directly from disk.

MISOSYS Disassembler - Disk version III

DSMBLR - 6

INPUT MODE SPECIFICATION
========================

 Whenever you exit the Control Function prompts, you will be prompted to
enter the mode of input. Two modes are available, disk (D) or memory (M). The
prompt message is as follows:

 Input: <D>isk or <M>emory (D,M)? >

If you are disassembling from memory, you will receive prompts to specify the
starting, ending and relocation addresses to be used for the disassembly.
These prompts are shown in the next section entitled "Disassembly Address
Prompts". If your disassembly is from a CMD-type load module file (by
entering <D>), you will receive a prompt to enter the filespec with:

 Enter filespec? >

If you do not specify a file extension, "/CMD" will be used. If the file you
specified is opened properly, the disassembler will interrogate you for
screening data. This is discussed in the section entitled "Screening Data
Entry".

MISOSYS Disassembler - Disk version III

DSMBLR - 7

DISASSEMBLY ADDRESS PROMPTS
===========================

 Whenever you request a disassembly from memory (disassemblies from disk
will automatically use the entire CMD file), you will be prompted to enter
the storage locations of the program you want to disassemble. The addresses
are entered in hexadecimal. Full line input control keys (backspace, line
delete, etc.) are supported as in BASIC or DOS command input. In addition,
you may enter the value without leading zeroes (0000 as 0, 06CC as 6CC or
6cc, etc.). The hexadecimal numbers X'A' through X'F' may be entered in lower
case as well as upper case. These prompts appear as follows:

 Start address = >

 Enter the memory address at which the disassembly should begin. This
will be the first memory location that will be disassembled. If the <S>
control function was used to load a SYSTEM program, this value would be
automatically set to the programs START address.

 End address = >

 This is the memory address at which disassembly should cease (Note that
disassembly will rum from START up to but not including END so END should be
one memory position beyond where you want to stop the disassembly). For
example, if you want to disassemble memory from X'0000' through X'2FFF', END
should be entered as "3000". The disassembler will not function properly if
END is entered as "FFFF". Similar to START, this variable will be set to one
greater than the end address if the program to disassemble was loaded with
the "S" control command.

 Reloc address

 If you had to move the program that you are disassembling (termed the
target program) to an address area different from where it originally loaded
because it would have overlayed (loaded into the same region as) the
disassembler, the START address should be entered here. For example, if the
target program originally loaded from 5000H through 5500H and you move it to
load at 7000H through 7500H, then use START=7000, END=7500, RELOC=5000. This
feature is useful to recover proper address references to code that may have
been relocated to a higher or lower address in order to eliminate conflict
with the load point of the disassembler. Programs may be moved by using
CMDFILE, the extended DEBUG, or other such utility.

 Address entries are retained by the program until changed by entering
new values. Therefore, subsequent disassemblies using previously entered
address information can be performed just by depressing the <ENTER> key.
Also, responses to three address prompts may be entered on one line by
separating each with a comma. For example:

 Start address = >150,400,150

will input STARTing address of X'150', ENDing address of X'400', and
RELOCation address of X'150' (a relocation address of X'150' would also be
used by omitting the relocation entry and depressing <ENTER> in response to
the "Reloc address" query).

MISOSYS Disassembler - Disk version III

DSMBLR - 8

SCREENING DATA ENTRY
====================

 Just about every program that you will disassemble has segments that are
actual code and other segments that are data. The disassembler will assume
that all segments are actual code unless told otherwise. The "screening data"
entry is the way in which you tell the disassembler what segments of the
program are to be interpreted as data regions. The disassembler will prompt
you with the message:

 Enter screening filespec or <ENTER>

If you have NOT prepared screening text, depress <ENTER> and the disassembler
will proceed to the ouptut command prompt. If you have prepared a screening
text file, enter its file specification. If you omit the file extension,
"/TXT" will be assumed. If you are using LDOS or another LDOS compatible DOS,
you may enter "*KI" as the specification and enter your data from the
keyboard. Your entries will be echoed to the video screen; however, all
characters are treated as text data - backspace is non-functional. Using *KI
is a quick-and-dirty method of entering a very brief amount of screening
text.

 You must arrive at the addresses of the "segments" by an analysis of the
target program. For instance, a first disassembly to the video screen will
easily identify literals since the ASCII equivalent of the object code is
displayed. Make note of the address ranges on a piece of scrap paper to be
used in building a text file of screening data fields. The "smarter" you are
in assembly language, the easier it will be to identify word and byte data.
The section entitled, "Developing Screening Data" will provide hints and
techniques to aid you. Once you build your text file, repeat the disassembly
process to "purify" the resultant output. With a little bit of effort, you
can rapidly construct a perfect source code image.

 The address ranges are entered in the following formats:

 aaaa-bbbb = Treat as data, all bytes in the range X'aaaa'
 through X'bbbb' inclusive (aaaa <= bbbb).

 -cccc = Treat as data, all bytes in the range X'0000'
 through X'cccc' inclusive.

 dddd- = Treat as data, all bytes in the range X'dddd'
 through X'FFFE' inclusive.

 eeee = Treat as data, the byte at address X'eeee'

If during a disassembly, a "properly" decoded instruction extends into a
screening data range entered, data will be interpreted starting with the next
address.

 Since each program's data structures are unique, the disassembler
accepts screening data entries in a loose format. The fields are entered as
plain text using the EDAS editor, most word processors that provide ASCII
output, or even via the BASIC program, TEXT/BAS, listed in the APPENDIX. Each
field is separated by a comma delimiter. Carriage returns may be entered and
take the place of a comma (that means that if you use discrete lines, the
entire field must be contained on one line. Any entered spaces are ignored.

MISOSYS Disassembler - Disk version III

DSMBLR - 9

The input stream is terminated by entering a period (.) after the last field
entry.

 Data usually take one of three forms: literal fields commonly called
strings (words that you can read - i.e. messages, prompts, etc.); byte fields
of varying length with each byte a distinct value (tables, conversion codes,
one-byte length specifiers), "confusion" bytes (hex values placed to alter
the sense of following code depending on entry point; and "words" of varying
length (16-bit values commonly used as pointers, arithmetic values, etc.).
The disassembler recognizes certain prefix specifiers to force the data
generation to literal, byte, or word formats.

 Prefixing the screening field with a dollar sign ($) will force literal
decomposition with the output formed into "DB 'string'" (equivalent to DEFM)
pseudo-OP declarations. A pound sign (#) will force the data to be decomposed
into words using "DW Mxxxx" (equivalent to DEFW) pseudo-OP declarations. The
DW operand fields will be in symbolic name ("label") format - with the
resulting 16-bit values forcing an entry into the symbol table. The default
will be decomposition into "DB xxH" declarations if no prefix is specified.

 Where a literal has been forced, the disassembler maintains a range
check for the characters. Valid literal characters are in the range X'20'-
X'26' and X'28'-X'7E'. If a character value is outside this range, the
decomposition will automatically revert to " xxH' format starting with that
character and continuing until a character within the literal range is
detected. For example, The byte sequence:

 4C 61 6E 27 74 0D

will decompose to the pseudo-OP declaration:

 DB<tab>'Can',27H,'t',0DH

Note that multiple operands are generated on a single line with each offset
by a comma. The MISOSYS assembler accepts this syntax on DB and DW pseudo-
OPs. It permits intermixing byte and literal operands with the DB pseudo-OP.
If the assembler you will use to assemble the output does not support this
construct, you will have to separate the line into multiple lines once you
obtain your output file.

 The disassembler will output approximately 18 characters in the operand
field of a line. If the screening range is such that the decomposition would
exceed that limit, a subsequent line is generated. Also, any labels that
would be addressed in the scope of the DB or DW field will be output
immediately following the line. This would appear as "LA8EL EQU $-n", where
"n" is the offset from the current program counter. If the label is valid,
you may want to split your screening field into two fields starting the
second at the label address and ending the first one address before the
label.

 A sample screening data input is as follows:

 5228-5229,$5384-53aa,#5829-5832,5416
 $5b20-5b3d,5f67-5f68.

MISOSYS Disassembler - Disk version III

DSMBLR - 10

Note that a line terminated by a carriage return does not have a terminating
comma. Also, the final character is a period (which may be followed by a
carriage return). Note also that the fields do not have to be in ascending
order (however, a range specification must be LOW-HIGH, i.e. the first
address entry must be less than or equal to the second address entry. The
disassembler will sort the fields by address after they are parsed. This
makes it easy to add to the screening data as you "purify" your disassembly
of a particular program.

 The distribution disk contains a few screening text files. One is for
Radio Shack Model I SCRIPSIT (SCRIPSIT/TXT). Another is BINHEX/TXT which is
the screening data for the sample public-domain program, BINHEX/CMD, which is
included on your disassembler diskette. BINHEX is a Model I/Ill program that
converts a binary "CMD" file to ASCII in a HEX format (similar to Intel's HEX
format). BINHEX was originally written in BASIC by Timothy Mann to use for
transmitting CMD files over a 7-bit communication's line. It was further
modified and then compiled using Bill Stockwell's BASIC/S compiler.
BINHEX/CMD is in the public domain and is included for you to disassemble -
as an exercise. The BINHEX/TXT file has been developed by MISOSYS to be used
as screening data while disassembling BINHEX/CMD. If you need the experience,
it is suggested that you "play" with the disassembly of BINHEX prior to using
the supplied text file as screening data. Develop your own screening data
file and compare it to ours.

 The SCRIPSIT/TXT file can be used by those folks with access to a Radio
Shack Model I version of SCRIPSIT/LC. When used as a screening data file, it
should produce a useful set of source files - uncommented!

MISOSYS Disassembler - Disk version III

DSMBLR - 11

OUTPUT COMMAND OPTIONS
======================

 The output device to receive the disassembly output is determined in
response to the prompt:

 Output: <R>eview, <S>creen, <P>rinter,
 <T>ape, <D>isk (R,S,P,T,D)? >

The <T>ape option is available only on the Model I and Model III computers.
Select one of the devices by entering its respective letter.

 During the disassembly, the byte value of instructions that have a byte-
value operand will be displayed in either of two formats depending on the
value of the byte. Bytes in the range X'20'-X'26' or X'28'-X'7E' will be
output as literals in the form, "'c'". All other values are displayed in the
form, "xxH", or if the value is in the range X'A0'-X'FF', "0xxH". The byte
values of index instruction offsets are output in the non-literal format
only. Also, the port number of IN and OUT instructions is kept non-literal.
In most cases, this display format provides more meaningful information than
displays strictly in the non-literal format. Sometimes, the literal
presentation looks foolish. Since the display format is chosen by ranging,
please accept the compromise approach chosen for the disassembler. You will
notice output displays such as:

 100C 2814 02442 JR Z,M1022 (.
 100E FE45 02443 CP 'E' .E
 1010 2810 02444 JR Z,M1022 (.
 1012 FE44 02445 CP 'D' .D
 1014 280C 02446 JR Z,M1022 (.
 1016 FE30 02447 CP '0' .0
 1018 28F0 0244d JR Z,M100A (p
 101A FE2C 02449 CP ',' .,
 101C 28EC 02450 JR Z,M100A (1
 101E FE2E 02451 CP '.' ..
 1020 2003 02452 JR NZ,M1025 .

which provide a greater ease in understanding the logic of a program.

<R>EVIEW

 The <R>eview function will produce a screen listing identical to that
discussed under <S>creen. The exception is that the listing will be displayed
in a continuous scroll instead of a screen at a time. The scrolling may be
temporarily suppressed by depressing the <PAUSE> (or <SHIFT-@>) key. Any
character entry except <PAUSE> will resume the scrolling.

<S>CREEN

 The <S>creen output is directed to the video CRT. Output is scrolled for
24 lines (16 on Model I or Model III), then paused. The next "page" commences
upon depression of any keyboard key. Depressing <BREAK> will interrupt output
and return you to the prompting message.

MISOSYS Disassembler - Disk version III

DSMBLR - 12

 The output display consists of the following references:

1. Effective memory address of the instruction.

2. Contents of memory starting from the instruction's physical memory
location for as many bytes as the instruction's length. Output is in
hexadecimal.

3. Sequential line number, in decimal, starting from 00001 and
incremented by 00001.

4. A SYMBOLIC LABEL, where referenced as a 16-bit or relative value by
the program to be disassembled, consisting of the address referenced
preceded by the letter "M".

5. The disassembled instruction using ZILOG mnemonics. The tab
character between the OP code and the OPERAND is expanded for screen
display.

6. Character output (in ASCII) of the instruction's hexadecimal values.
Bit 7 is stripped from each byte prior to display in order to better
identify character strings that utilize bit 7 for "begin-string" or
"end-string" detection. Non-printable characters are converted to a
period.

<P>RINTER

 This function will provide the same output as the <S> function except
that the output is directed to the LINE PRINTER. The output is printed 56
lines per page or other amount depending on your optional LINES parameter.
Each page is numbered sequentially starting from 00001 and incremented by
00001. A heading which labels each column is provided on each page.

 When the printer command is entered, the program will request you to
enter a title and position the printer paper to receive the output listing.
The prompt:

 Ready printer and enter title

will be displayed. If you are using the 56 lines per page default, your paper
should be positioned to start printing on the sixth line of the page. This
will provide a top and bottom margin of five lines each on eleven inch paper
which takes 66 lines per page. You may enter a title of up to twelve (12)
characters which will be placed in the heading on each page of printed
output. After depressing <ENTER> following the title, the disassembly will
automatically start. By depressing the <BREAK> key at any time during the
printing, the output will be interrupted and you will return to the prompt
message (Model I or Model III users can only interrupt the printing while the
printer is in a "ready" state).

<T>APE

 This command, available only on the Model I or Model III, will create a
source cassette tape suitable for loading into the Radio Shack cassette
Editor Assembler or Microsoft's EDTASM+. After entering the <T>ape command,
you will be prompted to prepare the cassette for writing with the message:

MISOSYS Disassembler - Disk version III

DSMBLR - 13

 Ready cassette and Enter (Model I)
 Ready cassette and Enter <H,L> (Model III)

Depression of the <ENTER> key will cause the disassembly to start. If you are
using a Model III machine, you must select the appropriate speed of the tape
file by entering either "H" for 1500 baud or "L" for 500 baud generation. You
must specify the parameters HEADER and NUMBER when executing the disassembler
to properly construct an output tape. The output consists of:

 1. The 5-digit ASCII line number,

 2. The SYMBOLIC LABEL (or tab if a label is not required),

 3. The disassembled instruction. The tab character between the OP
 code and the OPERAND is not expanded.

 The tape is created in blocks consisting of 256 lines of output per
block. File names are assigned sequentially. The first is "BLOCKA", the
second is "BLOCKB", etc., incrementing the sixth character by one letter for
each block. A five (5) second blank segment is written between each block to
provide a manual search capability. An asterisk (*) blinks in the upper right
hand corner of the screen (3C3FH) for every two lines of output. The starting
address of the block will be output to the screen. Depressing the <BREAK> key
will interrupt the tape output only during the period of asterisk blinking.

<D>ISK

 The <D> function provides the capability of generating a source disk
file which can be loaded into the MISOSYS editor assembler, EDAS. The file(s)
will be un-numbered and un-headered unless the NUMBER and/or HEADER
parameters were entered on the disassembler execution command line. You will
be prompted to enter the filespec with the prompt:

 Enter filespec? >

 If you omit the file extension, "/ASM" will be used as a default. After
entering the desired filespec, the source file will be created. It is
entirely possible that a disassembly could create a file larger than will
load into EDAS depending on your system's memory configuration and the memory
region or disk file being disassembled. In order to make sure that this does
not happen, the disassembler will automatically partition the output into
multiple files once a file reaches the maximum size as specified with the
SIZE parameter.

 In order to accomplish the output partitioning, the disassembler first
makes sure that the diskette receiving the output has free space sufficient
to store the maximum size file. As each line is written to the output file,
the disassembler checks to see if the last sector of the file has been
reached. Processing continues if the output has not reached the last sector;
however, if the last sector has been reached, the EOF character (X'1A') is
written and the file is closed. If the output filespec originally contained
not more than seven characters, a new filename will be automatically
constructed by appending 'A' to the filename. Assuming all goes well, you
will be informed of the automatic generation of this file by the message:

 Output file is full. Creating file: filespec

MISOSYS Disassembler - Disk version III

DSMBLR - 14

The new file will be created and processing will continue until this new file
reaches the maximum SIZE. If a third output file is needed, the 'A' is
replaced by 'B'. This will continue for 'C', 'D', ... 'Z' for up to 27 output
files (your original file plus files appended with A, B, ..., Z).

 If your original output filespec had an eight-character filename, then
the disassembler still closes the output file. However, you will have to
enter a new filespec for the subsequent file. The following message will
inform you of this action:

 Output file is full; Enter filespec? >

If your new filespec contains an eight-character filename, you will continue
to be prompted the next time another output file is needed. If, on the other
hand, you enter a filespec with less than an eight-character name, automatic
filespec generation will commence with the next output file, if required.

 If your output disk becomes full and the disassembly is not complete,
you will be prompted to change output diskettes - PROVIDED IT CAN BE
ACCOMPLISHED. If the disk drive containing the output diskette is a hard
drive [LDOS only], if you are running the disassembler from Job Control
Language [LDOS only], or if the input is from a disk file located on the same
disk drive as the output disk file, the disassembly will abort and the
following message will be displayed:

 Disk is full - Can't continue!

Otherwise, the disassembler will prompt you to change the output diskette
with the following message:

 Disk is full! - Enter new output disk <ENTER>

After replacing the output diskette, depress the <ENTER> key and the
disassembler processing will continue.

MISOSYS Disassembler - Disk version III

DSMBLR - 15

DEVELOPING A SOURCE PROGRAM
===========================

 The best way to employ the power of the MISOSYS disassembler in order to
create a "SOURCE" program, the following steps should be performed:

1. Either disassemble directly from a disk CMD-type file (which will provide
output of whatever is in the file) and proceed to step 2 or determine the
boundaries of the machine language program in memory. If your target program
is on a cassette tape, transfer it to a CMD disk file via a tape-to-disk
utility then proceed to disassemble the disk file. If you insist on reading
the tape program into memory by using the "S" control command, you will find
that a better procedure is to use the "T" control command first since it is
possible that the target program may load into the same region as the
disassembler. The START and END values will automatically be initialized to
those determined from the program tape itself.

2. Disassemble to the video screen or printer to detect regions that may have
been character string literals or data. Make note of these regions on scratch
paper (or the printer output listing) to use in building a screening data
text file.

3. Follow up with a disk output command to generate the SOURCE disk file.
Enter your screening data text filespec at the appropriate time so that the
data regions of the target program are interpreted properly.

4. Load the SOURCE disk file into the editor assembler. If the output has
been partitioned into multiple files, you will need to use the *GET facility
of EDAS (or *INCLUDE facility of other assemblers).

5. Make an attempt to scrutinize the listing and comment those sections you
begin to understand. As you become more experienced with Z-80 assembler
code, this will become an easy task. Illogical code sequences are probably
data areas that you omitted from the screening data text file.

MISOSYS Disassembler - Disk version III

DSMBLR - 16

DEVELOPING SCREENING DATA
=========================

 The experienced assembly language programmer should have little
difficulty in detecting the segments of a target program that are not code
segments. However, since everyone cannot be considered "experienced",
herewith are a few tips to keep in mind when you are screening a target
program for non-code regions.

 The first example illustrates an easy observation. Note that from the
ASCII column, a message is spelled out starting from the label "M010E". A
good guess is that the message extends through address X'011B' even though
the last byte is a NOP instruction. Since the next label is not until after
the NOP, you should first try to interpret from X'010E' through X'011B' as a
literal. This is done by entering a screening data field as '$10e-11b".

 010B 5A 00145 M010B LD E,D Z
 010C 45 00146 LD B,L E
 010D 00 00147 NOP .
 010E 52 00148 M010E LD D,D R
 010F 2F 00149 CPL /
 0110 53 00150 LD D,E S
 0111 204C 00151 JR NZ,M015F L
 0113 322042 00152 LD (M4220),A 2 B
 0116 41 00153 LD B,C A
 0117 53 00154 LD D,E S
 0118 49 00155 LO C,C I
 0119 43 00156 LD B,E C
 011A 0D 00157 DEC C .
 011B 00 00158 NOP .
 011C Cs 00159 M011C PUSH BC E

 The next example illustrates nonsense code beginning at address X'07F8'.
It appears to be nonsense through X'0808' but starting at X'0809' (which has
a label), the code starts to make sense. This must be a data segment since
there is no way to conceptualize literal data. The next question is whether
it is "byte" or "word" data. Since there appears to be boundaries every four
bytes (note the label positions), we may have byte, word, or even something
else. Experience will show that the segment is actually floating-point data.
However, you may treat it as "byte" data since "word" data will generate
labels that may be spurious.

 07F4 1F 01196 RRA .
 07F5 47 01197 LD B,A G
 07F6 18EF 01198 JR M07E7 .0
 07F8 00 01199 M07F8 NOP .
 07F9 00 01200 NOP .
 07FA 00 01201 NOP .
 07FB 81 01202 ADD A,C .
 07FC 03 01203 M07FC INC BC .
 07FD AA 0i204 XOR D *
 07FE 56 01205 LD D,(HL) V
 07FF 19 01206 ADD HL,DE .
 0800 80 01207 M0800 ADD A,B .
 0801 Fl 01208 POP AF q
 0802 227680 01209 LD (M8076),HL "v.

MISOSYS Disassembler - Disk version III

DSMBLR - 17

 0805 45 01210 LD B,L E
 0806 AA 01211 XOR D *
 0807 3882 01212 JR C,M078B 8.
 0809 CD5509 01213 M0809 CALL M0955 MU.
 080C B7 01214 OR A 7
 080D EA4A1E 01215 JP PE,M1E4A jJ.
 0810 212441 01216 LD HL,M4124 !$A

 The next example is something that you should quickly get familiar with.
Note the interstitial label at address X'13E2'. It is pointing to an address
that contains the byte, X'21'. If this were the beginning of an instruction,
it would be a "LD HL,nn" 3-byte instruction. Also, if such were the case, the
two following bytes would not be single-byte instructions but the operand
field of the "LD HL,nn" instruction. You should also note that starting at
X'13D8', the code is nonsense! You should easily observe that the segment
from X'13D8' through X'13E1' is a data table. You should also quickly get
used to those values - a power-of-10 table composed of the values, 10000,
1000, 100, 10, and 1. Set aside a data screening entry of "#13d8-13e1". This
will also correct the decomposition of the "LD HL,nn" instruction.

 13D2 A0 03053 M13D2 AND B .
 13D3 86 03054 ADD A,(HL) .
 13D4 011027 03055 LD BC,M2710 ..'
 13D7 00 03056 NOP .
 13D8 1027 03057 M13D8 DJNZ M1401 .'
 13DA E8 03058 RET PE h
 13DB 03 03059 INC BC .
 13DC 64 06060 LD H,H d
 l3DD 00 03061 NOP .
 l3DE 0A 03062 LD A,(BC) .
 13DF 00 03063 NOP .
 13E0 010021 03064 LD BC,M2100 ..!
 03065 M13E2 EQU $-1 .
 13E3 82 03066 ADD A,D .
 13E4 09 03067 ADD HL,BC .

 A great many tables of data relate to addresses. These are tables used
as pointers or relocation data. They are easily picked out by nonsense code
and logical values as "words". In the following partial listing, note that
the first byte varies the full range of byte values (like a low-order value
of an address) while the second byte is in a finite range (like the high-
order byte of an address). Look for the scope of the table and you will have
another "word" segment to be screened with a "#1608-bbbb" field.

 1608 8A 03376 M1608 ADC A,D .
 1609 09 03377 ADD HL,BC .
 160A 37 03378 SCF 7
 160B 0B 03379 DEC BC .
 160C 77 03380 LD (HL),A w
 160D 09 03381 ADD HL,BC .
 160E D427EF 03382 CALL NC,MEF27 T'o
 1611 2AF527 03383 LD HL,(M27F5) *u'
 1614 E7 03384 RST 20H g

MISOSYS Disassembler - Disk version III

DSMBLR - 18

 1615 13 03385 INC DE .
 1616 C9 03386 RET I
 1617 14 03387 INC D .
 1618 09 03388 ADD HL,BC .
 1619 08 03389 EX AF,AF' .
 161A 39 03390 ADD HL,SP 9

 Programmers will, at times, provide "hidden" entry points by prefixing a
one, two, or three byte instruction with a byte value that turns the
instruction into a two, three, or four byte instruction. Its function is to
mask the "hidden" instruction when reached in-line. Note the interstitial
labels M199A, M199D, and M19A0. Doesn't the code look funny? Observe that the
code is similar to the code at X'1997' if entered at the label entries. The
code would, in fact, be additional "LD E,n" instructions with "n" taking on
different values. Set up screening data fields as "1999,199c,199f" and the
code will be properly decomposed. Incidentally, the label "M1998" was
probably spuriously generated by decomposing a data region as code.

 1991 2ADA40 04054 M1991 LD HL,(M40DA) *Z@
 1994 22A240 04055 LD (M40A2),HL ""@
 1997 1E02 04056 M1997 LD E,02H ..
 04057 M1998 EQU $-1
 1999 011E14 04058 LD BC,M141E ...
 04059 M199A EQU $-2
 199C 011E00 04060 LD BC,M001E ...
 04061 M199D EQU $-2
 199F 011E24 04062 LD BC,M241E ..$
 04063 M19A0 EQU $-2
 19A2 2AA240 04064 M19A2 LD HL,(M40A2) *"@
 19A5 22EA40 04065 LD (M40EA),HL "j@

 The next example illustrates the same kind of "hidden" entry. Only this
time, an extra byte of X'DD' is inserted to turn "LD HL,nn" instructions into
"LD IX,nn" instructions. Register pair HL would be set to the value loaded at
whatever entry was taken. Set up screening data as "24fa,24fe".

 24F6 C9 00135 RET I
 24F7 21D225 00136 M24F7 LD HL,M25D2 !R%
 24FA DD219825 00137 LD IX,M2598]!.%
 00138 M24FB EQU $-3
 24FE DD217E25 00139 LD IX,M257E]!.%
 00140 M24FF EQU $-3
 2502 3E0C 00141 LD A,0CH >.
 2504 EF 00142 RST 28H 0
 2505 21FFFF 00143 LD HL,MFFFF !..

 These examples will put you on the right track when interpreting the
disasssembled output for data screening. Clean up literal segments first to
reduce the frequency of spurious labels. Pay close attention to segments that
do not make sense as code and screen as data. Analyze the reason for
interstitial labels. Are they used to implement "hidden" entry points? In
short time, you will become "experienced" in producing a near-perfect source
document.

MISOSYS Disassembler - Disk version III

DSMBLR - 19

TEXT/BAS
========

 The following BASIC program may be used to enter screening text data
into a file. It is a primitive program to be used only if you have no other
text editor.

 10 LINEINPUT "FILENAME/EXT"; F$: IF F$="" THEN CLOSE: END
 20 OPEN "O",1,F$
 30 PRINT"ENTER SCREENING DATA (NULL LINE TO END)"
 40 LINEINPUT AS
 50 IF A$ = "" THEN CLOSE: END
 60 PRINT#1,A$: A$="": GOTO 40

MODEL I TRSDOS PATCH
====================

 Model I TRSDOS users will find difficulty in reading the DSMBLR
distribution disk (this is due to the data address mark used for the
directory). Therefore, before making a BACKUP or copying files from the
DSMBLR diskette, you will need to patch your TRSDOS 2.3. This change will in
no way affect the operation of your TRSDOS. To prepare for this patch, obtain
a fresh BACKUP of your TRSDOS 2.3. Enter the following BASIC program and RUN
it.

 10 OPEN"R",1,"SYS0/SYS.WKIA:0"
 20 FIELD 1,171 AS R1$, 1 AS RS$, 84 AS R2$
 30 GET 1,3: LSET RS$="<": PUT 1,3: CLOSE: END

This program will change the byte in SYS0/SYS that loads at address X'46B0'
from X'7C' to X'3C' . After you RUN the program, re-BOOT your TRSDOS diskette
to correct the byte in memory.

 Alternatively, if you do not want to patch your TRSDOS system diskette,
you may change the value directly in memory by the use of DEBUG. This
procedure is as follows:

 1. At TRSDOS Ready, type DEBUG followed by <ENTER>.
 2. Depress the <BREAK> key to enter the DEBUGger.
 3. Type M46B0 followed by the <SPACE> bar.
 4. Type 3C followed by <ENTER>.
 5. Type G402D followed by <ENTER>.

Now, using either method noted above, COPY the files from the DSMBLR diskette
to your TRSDOS diskette.

	Top of document
	GENERAL
	DISTRIBUTION DISKETTE
	EXECUTION INSTRUCTIONS
	CONTROL FUNCTION OPTIONS
	INPUT MODE SPECIFICATION
	DISASSEMBLY ADDRESS PROMPTS
	SCREENING DATA ENTRY
	OUTPUT COMMAND OPTIONS
	DEVELOPING A SOURCE PROGRAM
	DEVELOPING SCREENING DATA
	TEXT/BAS
	MODEL I TRSDOS PATCH

